Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
Nucleic Acids Res ; 49(W1): W46-W51, 2021 07 02.
Article in English | MEDLINE | ID: covidwho-1319189

ABSTRACT

With Aviator, we present a web service and repository that facilitates surveillance of online tools. Aviator consists of a user-friendly website and two modules, a literature-mining based general and a manually curated module. The general module currently checks 9417 websites twice a day with respect to their availability and stores many features (frontend and backend response time, required RAM and size of the web page, security certificates, analytic tools and trackers embedded in the webpage and others) in a data warehouse. Aviator is also equipped with an analysis functionality, for example authors can check and evaluate the availability of their own tools or those of their peers. Likewise, users can check the availability of a certain tool they intend to use in research or teaching to avoid including unstable tools. The curated section of Aviator offers additional services. We provide API snippets for common programming languages (Perl, PHP, Python, JavaScript) as well as an OpenAPI documentation for embedding in the backend of own web services for an automatic test of their function. We query the respective APIs twice a day and send automated notifications in case of an unexpected result. Naturally, the same analysis functionality as for the literature-based module is available for the curated section. Aviator can freely be used at https://www.ccb.uni-saarland.de/aviator.


Subject(s)
Computer Graphics , Software , Drug Repositioning , Humans , Internet , Melanoma/metabolism , Receptors, Odorant/metabolism , Signal Transduction , COVID-19 Drug Treatment
3.
Nature ; 595(7868): 565-571, 2021 07.
Article in English | MEDLINE | ID: covidwho-1275939

ABSTRACT

Although SARS-CoV-2 primarily targets the respiratory system, patients with and survivors of COVID-19 can suffer neurological symptoms1-3. However, an unbiased understanding of the cellular and molecular processes that are affected in the brains of patients with COVID-19 is missing. Here we profile 65,309 single-nucleus transcriptomes from 30 frontal cortex and choroid plexus samples across 14 control individuals (including 1 patient with terminal influenza) and 8 patients with COVID-19. Although our systematic analysis yields no molecular traces of SARS-CoV-2 in the brain, we observe broad cellular perturbations indicating that barrier cells of the choroid plexus sense and relay peripheral inflammation into the brain and show that peripheral T cells infiltrate the parenchyma. We discover microglia and astrocyte subpopulations associated with COVID-19 that share features with pathological cell states that have previously been reported in human neurodegenerative disease4-6. Synaptic signalling of upper-layer excitatory neurons-which are evolutionarily expanded in humans7 and linked to cognitive function8-is preferentially affected in COVID-19. Across cell types, perturbations associated with COVID-19 overlap with those found in chronic brain disorders and reside in genetic variants associated with cognition, schizophrenia and depression. Our findings and public dataset provide a molecular framework to understand current observations of COVID-19-related neurological disease, and any such disease that may emerge at a later date.


Subject(s)
Astrocytes/pathology , Brain/pathology , COVID-19/diagnosis , COVID-19/pathology , Choroid Plexus/pathology , Microglia/pathology , Neurons/pathology , Aged , Aged, 80 and over , Brain/metabolism , Brain/physiopathology , Brain/virology , COVID-19/genetics , COVID-19/physiopathology , Cell Nucleus/genetics , Choroid Plexus/metabolism , Choroid Plexus/physiopathology , Choroid Plexus/virology , Female , Humans , Inflammation/virology , Male , Middle Aged , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , Single-Cell Analysis , Transcriptome , Virus Replication
4.
Nature ; 594(7862): 265-270, 2021 06.
Article in English | MEDLINE | ID: covidwho-1246377

ABSTRACT

Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine1,2. Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes3. However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation4,5. Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm Learning-a decentralized machine-learning approach that unites edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confidentiality without the need for a central coordinator, thereby going beyond federated learning. To illustrate the feasibility of using Swarm Learning to develop disease classifiers using distributed data, we chose four use cases of heterogeneous diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 16,400 blood transcriptomes derived from 127 clinical studies with non-uniform distributions of cases and controls and substantial study biases, as well as more than 95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those developed at individual sites. In addition, Swarm Learning completely fulfils local confidentiality regulations by design. We believe that this approach will notably accelerate the introduction of precision medicine.


Subject(s)
Blockchain , Clinical Decision-Making/methods , Confidentiality , Datasets as Topic , Machine Learning , Precision Medicine/methods , COVID-19/diagnosis , COVID-19/epidemiology , Disease Outbreaks , Female , Humans , Leukemia/diagnosis , Leukemia/pathology , Leukocytes/pathology , Lung Diseases/diagnosis , Machine Learning/trends , Male , Software , Tuberculosis/diagnosis
5.
J Med Internet Res ; 22(12): e24514, 2020 12 11.
Article in English | MEDLINE | ID: covidwho-971073

ABSTRACT

BACKGROUND: The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has instigated immediate and massive worldwide research efforts. Rapid publication of research data may be desirable but also carries the risk of quality loss. OBJECTIVE: This analysis aimed to correlate the severity of the COVID-19 outbreak with its related scientific output per country. METHODS: All articles related to the COVID-19 pandemic were retrieved from Web of Science and analyzed using the web application SciPE (science performance evaluation), allowing for large data scientometric analyses of the global geographical distribution of scientific output. RESULTS: A total of 7185 publications, including 2592 articles, 2091 editorial materials, 2528 early access papers, 1479 letters, 633 reviews, and other contributions were extracted. The top 3 countries involved in COVID-19 research were the United States, China, and Italy. The confirmed COVID-19 cases or deaths per region correlated with scientific research output. The United States was most active in terms of collaborative efforts, sharing a significant amount of manuscript authorships with the United Kingdom, China, and Italy. The United States was China's most frequent collaborative partner, followed by the United Kingdom. CONCLUSIONS: The COVID-19 research landscape is rapidly developing and is driven by countries with a generally strong prepandemic research output but is also significantly affected by countries with a high prevalence of COVID-19 cases. Our findings indicate that the United States is leading international collaborative efforts.


Subject(s)
COVID-19/epidemiology , Publications/statistics & numerical data , COVID-19/virology , Humans , International Cooperation , Pandemics , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL